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Abstract—Development of a robust and scalable multi-camera
surveillance system is the need of the hour to ensure public
safety and security. Being able to re-identify and track one
or more targets over multiple non-overlapping camera Field-
of-Views in a crowded environment remains an important and
challenging problem because of occlusions, large change in the
viewpoints and illumination across cameras. However, the rise of
wearable imaging devices has led to new avenues in solving the
re-identification (re-id) problem. Unlike static cameras, where the
views are often restricted or low resolution and occlusions are
common scenarios, egocentric/first-person-views (FPVs) mostly
get zoomed in, un-occluded face images. In this paper, we present
a person re-identification framework designed for a network of
multiple wearable devices. The proposed framework builds on
commonly used facial feature extraction and similarity computa-
tion methods between camera pairs and utilizes a data association
method to yield globally optimal and consistent re-id results
with much improved accuracy. Moreover, to ensure its utility
in practical applications where large amount of observations are
available every instant, an online scheme is proposed as a direct
extension of the batch method. This can dynamically associate
new observations to already observed and labeled targets in an
iterative fashion. We tested both the offline and online methods on
realistic FPV video databases, collected using multiple wearable
cameras in a complex office environment and observed large
improvements in performance when compared to the state-of-
the-arts.

Index Terms—Person re-identification; Egocentric videos;
Wearable devices; Face recognition; Multi-camera surveillance.

I. INTRODUCTION

HE past few years have observed efforts of unprece-

dented scale to develop robust, reliable and scalable
visual surveillance systems, fueled by the advancement of
imaging sensor technology. As more sophisticated and cheaper
imaging devices become commercially available everyday, a
large number of such devices (e.g., networked cameras) are
being deployed to continuously monitor very large crowded
facilities like shopping malls, public transportation hubs, city
streets etc. to ensure public safety and security. It is no longer
feasible to manually process and analyze these enormous
volumes of data stream every second, due to the amount of
human supervision and costs involved. This, in turn, yielded an
important and challenging computer vision problem - person
re-identification.
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Fig. 1. Illustrative diagram for person re-identification using multiple first-
person-view cameras. Three wearable devices (Google Glasses), shown as
Cam 1-3, are worn by security personnels at different levels in a multi-stored
congested shopping mall. As a target appears in the Field-of-View (FoV) of
a camera (shown using trapezoidal regions on the ground plane), uncluttered
face shots of the target can be observed and processed for re-identification.

While monitoring large areas under surveillance, the Field-
of-Views (FoV) of the cameras in the network are often non-
overlapping and targets can disappear in the large blind gaps
as they move from one camera FoV to another. A typical
re-identification (re-id) problem is an inter-camera target as-
sociation problem, where the task is to automatically keep
track of individuals or groups of targets in a non-overlapping
camera network. Once a target leaves a camera FoV, the re-id
system must be capable of re-associating the same target when
it reappears at a different location and time.

Person re-identification has remained a challenging and
a partially open problem in the computer vision literature
despite continuous research efforts because of a number of
challenges associated with the data. Typically, the surveillance
cameras are set up to capture wide area videos and hence the
individual targets are often few pixels in size in these large
FoVs. Naturally, capturing discriminative biometric informa-
tion for individuals (such as facial features) has been very
challenging and unreliable for these surveillance cameras as
the faces are often negligible in size and/or heavily occluded
because of pose of the target or obstructions in the scene.
Hence, visual appearance features (such as color/textures)
of the observed targets [1], [2] are still first choices for
most person re-id systems. Unfortunately, these features are
often non-discriminative because of similar colored clothing of
targets and are heavily affected by clutter, occlusion and wide
variation of viewpoint and illumination across different camera
FoVs. Moreover, because of the aforementioned problems, the



appearance features from the same target may appear very
differently from one camera to another.

In recent past, there has been a rapid rise in the develop-
ment of microelectronic devices, enabling wearable sensors
and mobile devices with unprecedented video acquisition and
processing capabilities. Google Glasses (GG) [3] and GoPro
[4] are just two of many such devices. These wearable devices
can capture, record and analyze egocentric (also termed as
First-Person-View) video data for human identification [5],
[6], [7], which is of paramount interest especially for visual
surveillance or monitoring, assistance to elderly, social interac-
tions, etc. These wearable devices (such as GG) can easily be
networked so that they can communicate and share information
among each other as well as with a remote server.

A network of multiple First-Person-View (FPV) cameras on
modern wearable devices such as GGs could, therefore, be a
good solution to alleviate the aforementioned challenges in
person re-identification, as they can supply zoomed in, un-
cluttered face shots of targets. Besides, unlike static mounted
cameras, the observers wearing these wearable cameras can be
placed at any location and hence a more robust and fool-proof
surveillance system can be designed. An example scenario of
wide area monitoring using three GGs are shown in Fig. 1.
Three observers wearing the glasses are monitoring a large
multi-storied shopping mall. Whenever a person appears in the
FoV of any of the GGs, unconstrained high quality face shots
of the target are captured and compared against observations
from other cameras for rapid re-identification.

In this paper, we present a framework for person re-
identification using multiple wearable cameras supplying ego-
centric/FPV facial images of each target. For this, we have
successfully combined the state-of-the-arts holistic discrimi-
native feature computation methods from the FPV face recog-
nition literature with the robust data association techniques
reported in the person re-identification community. The pro-
posed framework starts by extracting facial features from each
detected face and then feature similarities are computed be-
tween targets across wearable camera pairs. In the network of
more than two wearable cameras, multiple paths of association
may exist between observations of the same target in different
cameras and this often gives rise to the network inconsistency
problem. Moreover, unlike classic person re-id problem, not
all the persons are observed in all the cameras. All pairwise
similarity scores, computed in the first step are, therefore,
input to a global data association method known as Network
Consistent Re-identification (NCR) [8], [9] that yields the final
association results and can handle both the aforementioned
challenges. We have also collected a wearable device re-id
database where FPV videos of 72 targets are captured using 4
GGs in a realistic and complex office environment. Through
experiments on this dataset, we show that the NCR not only
forces consistency in association results across the network,
but also improves the pair-wise re-identification accuracies.

The re-id method, described above is very recently intro-
duced in [10]. However, in this paper, we not only present the
method in a substantially more detailed manner, but we also
extend it to propose an online person (face) re-identification
framework. In a large network of wearable devices, numerous

targets are observed every instant and the task is to assign
identification labels on each of these observations as and when
they become available. Thus, in such a realistic scenario, it
is often not feasible to solve the association via an offline
optimization problem, as the computational complexity rapidly
increases with large number of observations (see Fig. 13). The
proposed online person re-id works in an iterative fashion over
small successive time windows. At any iteration, the goal is
to associate a set of unlabeled observations acquired in the
most recent time window to the past observations, given that
the associations amongst the past observations are already
solved. We utilize the online NCR [9] for efficiently solving
this iterative global data association, which limits the size of
the problem in each iteration and thereby keeps the large re-
id problem tractable. Experiments are done on a new dataset
collected using 3 GGs and 14 targets (79 observations as most
targets were observed more than once in each GG) and the
results indicate robustness of the proposed online re-id method.

A. Related Work

Classic Person Re-identification: Person re-identification
using multiple FPVs or egocentric views is a new approach.
In the classical person re-identification problem, typically the
camera FoVs are wide and whole targets are observed at a
distance. Hence, the low resolution of the targets is often
the main source of challenge in person re-identification. The
existing camera pairwise person re-identification approaches
can be roughly divided into 3 categories- (i) discriminative
signature based methods [11], [2], [1], [12], [13], [14], [15],
(i1) metric learning based methods [16], [17], [18], [19], [20],
and (iii) transformation learning based methods [21], [22].
Multiple local features (color, shape and texture) are used to
compute person specific discriminative signatures [2], [1],
[12], [13], [14]. Metric learning based methods learn optimal
non-Euclidean metric defined on pairs of true and wrong
matches to improve re-id accuracy [19], [23], [24]. Transfor-
mation of features between cameras is learned via a brightness
transfer function (BTF) between appearance features [22], a
subspace of the computed BTFs [21], linear color variations
model [25], or a Cumulative BTF [26] between cameras. In
[27], the matching is conducted in a reference subspace after
both the gallery and probe data are projected into it.

In a recent work [28], video based modeling is introduced
to solve the re-id problem. A deep filter pairing neural network
was utilized in [29] to attain better re-id accuracy. Recent
approaches based on sparse coding and sparse dictionary learn-
ing have reported promising results in person re-identification
under occlusion [30] and viewpoint variation [31]. But all of
these methods suffer from the inherent challenges in person re-
id datasets, viz., weakly discriminative features because of low
resolution, occlusion and dependence on color/texture based
features because of inability of capturing high-resolution,
discriminative facial images.

Face identification in first-person-views: Person identi-
fication using faces obtained from static surveillance cameras
under unconstrained environment has been a very challenging
problem [32]. For humans, identifying individuals at a long
distance (low resolution face images and/or with occlusions)



has been easy as compared to machine identification of faces
[33]. Using a network of wearable devices, as shown in Fig. 1,
we envisage that identifying an individual would be easier as
compared to using only static cameras. Unlike static cameras,
wearable device cameras (like GGs) can capture faces in non-
occluded conditions with good resolutions, especially in cases
like social interactions [34], surveillance and monitoring. The
good thing about capturing face images and recognizing them
is that it does not involve the person to volunteer or the
person is not aware and hence it is non-intrusive. In addition
to the identity, human face brings many other attributes of the
owner such as emotion, trustworthiness, intension, personality,
aggressiveness, etc [35]. Hence, FPVs face images captured by
the wearable devices are important to analyze.

The main difficulties that face identification (FI) algorithms
have to deal with are two types of variations: intrinsic fac-
tors (independent of viewing conditions) such as age and
facial expressions and extrinsic factors (dependent on viewing
conditions) such as pose, occlusion and illumination. The
availability of high quality wearable cameras such as GG
and GoPro and their networking has helped in capturing face
images at multiple instances/places alleviating the problems
arising from extrinsic factors. Gan Tian ef al. in [34] used a
network of wearable devices along with other ambient sensors
to quantify/evaluate the quality of presenters making presenta-
tions in a conference/classroom setting. Many researchers have
begun collecting FPV videos for FI or memories for faces on
GG as a standalone device and also via bluetooth connection
with mobile phones [5], [36]. A large number of local features
with many distance measures on a wearable device database
is evaluated in [37]. They have shown that when a large
number of samples per person are available in the gallery
binarized statistical image features (BSIF) outperform many
other local features. Face images are of high dimensionality
and hence, extracting local features are time consuming. These
local features are typically of > 250 dimensions making it
unattractive for wearable devices which has limited computa-
tional resources [38].

Consistent Data Association: Although the high quality
facial features captured using wearable devices are more
discriminative in general than the typical color/texture based
features used in person re-id, they are still camera pairwise
and has to be processed by a global data association method
for generating consistent and improved results at the network
level. Some recent works aim to find point correspondences in
monocular image sequences [39] or links detections in a track-
ing scenario by solving a constrained flow optimization [40],
[41] or using sparse appearance preserving tracklets [42].
Another flow based method for multi target tracking was
presented in [43], which allows for one- to-many/many-to-one
matching and therefore can keep track of targets even when
they merge into groups. The problem of tracking different
kinds of interacting objects was formulated and solved as a
network flow mixed-integer program in [44]. With known flow
direction, a flow formulation of a data-association problem
will yield consistent results. But in data-association problems
with no temporal or spatial layout information (e.g. person
re-identification), the flow directions are not natural and thus

the performance may widely vary with different choices of
temporal or spatial flow. Recently, in [8], a network-consistent
re-identification (NCR) method is presented, which does not
require time order information of observations and proposes a
scalable optimization framework for yielding globally consis-
tent association results with high accuracy. However, [8] shows
experiments on a wide area database and does not utilize face
as an important cue for re-identification.

Using the transitivity of correspondence, point correspon-
dence problem was addressed in a distributed as well as
computationally efficient manner [45]. However, Consistency
and transitivity being complementary to each other, less com-
putation comes at the cost of local conflicts and mismatch
cycles in absence of any consistency constraints, requiring a
heuristics based approach to correct the conflicts subsequently.
The proposed NCR approach, on the other hand, uses maximal
information by enforcing consistency and produces a globally
optimal solution without needing to correct the correspon-
dences at later stages.

Differences with [10]: As mentioned earlier, a preliminary
version of the batch person re-identification method is recently
presented in [10]. In the present paper, we extend the batch
method to propose a new online person re-id framework
(Sec. II-C and Fig. 3). The discussion on the batch NCR
method is also expanded substantially (Sec. II-B, Fig. 2). A
large number of comparative experiments on old and new
(Fig. 10) FPV databases (with and without timestamps) using
batch and online methods are performed. Along with PCA,
FisherFaces and WSSDA, we have added one more FI method
(MSDA) for comparison (parts of Fig. 6, 8, Table I for batch
NCR). We have also added ROC curves (Fig. 9) for a better
comparison of offline re-id accuracy and shown example test
cases (Fig. 7) to highlight improvements attained by NCR in
rank-1 performance. Experiments on online re-id are shown in
Sec. III-D, Figs. 11, 12. We also provide a comparison between
the computation times for the batch and the online methods
with increasing number of observations (Fig. 13) and show
that the online method is more time and memory efficient.

II. PERSON RE-IDENTIFICATION FROM MULTIPLE FIRST
PERSON VIEWS

The proposed re-identification pipeline has two distinct parts
cascaded to one another -

1. Computation of features from acquired first person view
images in each device and subsequent estimation of feature
similarity/distance scores between all pairs of observations in
each camera pair. Following the general and widely accepted
assumption in person re-identification problem set up, we
assume that the observations from the same target in the
same camera field of vision (FoV) can be clustered a-priori
and hence intra-camera similarity score computation is not
required in this problem.

2. When observations are acquired using more than two
wearable devices/cameras, network consistency is enforced us-
ing network consistent re-identification framework. The inter-
camera similarity scores computed in step 1 are used as inputs
to this system and outputs are the final association labels
between pairs of observations across any two camera.



The online re-id pipeline is also comprised of the same two
components. However, it is an iterative framework that needs
to associate newly observed targets in a temporally sliding
window to all the past observations, given that the associations
between the past observations were already estimated through
the previous iterations. Thus, all association labels between
the past observations are also utilized as inputs to the second
part of the online person re-id framework.

A. Preprocessing and Feature Extraction

In the incoming image captured using wearable device, we
apply OpenCV face detector [46] to find faces. If a face is
found, we apply OpenCV eye detector [46] and integration
of sketch and graph patterns (ISG) [47] based eye detector to
locate the pair of eyes in oblique and frontal views. Through
the fusion and integration of both eye detectors, high success
rate of eye localization in the face images of FPV for both
frontal and non-frontal faces at various scales (sizes) are
achieved. Its fusion system could achieve over 90% accurate
rate for frontal view cases and over 70% accurate rate for non-
frontal view cases [5]. Using the detected eye coordinates,
faces are aligned, cropped and resized to 67 x 75 pixels.
Same normalization procedure is followed as described in [5].
To overcome the limitations discussed in subsection I-A, we
use the whole space subclass discriminant analysis (WSSDA)
method for face recognition proposed recently in [48]. This
approach extracts holistic discriminant features from diverse
face images which are of low dimensions and is attractive
among many related approaches and suitable for wearable
devices [5].

1) Within-Subclass Subspace Learning for Face Identifi-
cation: FI performance is constantly challenged by uncon-
strained pose, lighting, occlusion and expression changes.
Classical discriminant analysis methodologies employing
between-class and within-class scatter information lose crucial
discriminant information [49], [50], [51] and fail to capture the
large variances that exist in the appearance of same individual
(within-class). For example, mixture subclass discriminant
analysis (MSDA), an improvement over subclass discriminant
analysis [52] for face recognition, is presented in [53]. In this
approach, a subclass partitioning procedure along with a non-
Gaussian criterion are used to derive the subclass division
that optimizes the MSDA criterion, this has been extended to
fractional MSDA and kernel MSDA in [54]. However, these
approaches discard the null space of either within-class and
within-subclass scatter matrices, which plays a very crucial
role in the discriminant analysis of faces.

In WSSDA [48] each class is partitioned into subclasses
using spatial partition trees and then eigenfeature regulariza-
tion methodology [55] is used to alleviate the problems of
modeling large variances appearing in within-class face images
(images of an individual). This regularization of features
has facilitated in computing the total-subclass and between-
subclass scatter matrices (depending on the clusters for each
person and the number of people in the database) in the
original dimensionality of face images. Dimensionality reduc-
tion and feature extraction are performed after discriminant
evaluation in the entire within-subclass eigenspace.

When training is complete, only the low dimensional gallery
features and transformation matrix are stored in the system.
For enrollment of a new person, the incoming face images
are transformed using the training module (transformation
matrix) and only the gallery features are stored. In the recog-
nition phase, any incoming face image vector is converted
into a feature vector using the transformation matrix learned
by WSSDA method. The feature vector is used to perform
recognition by matching it with the gallery features. Using
cosine distance measures with 1-nearest neighbor (NN) as the
classifier. [48] has evaluated this methodology on the popular
YouTube unconstrained face video database [56] and also FPV
face videos [37]. For comparison purpose we use the popular
holistic features for FI, such as baseline principal component
analysis (PCA) [57], FisherFaces using PCA+linear discrimi-
nant analysis [58] and mixture subclass discriminant analysis
(MSDA) [53] to show that using various methods we can have
large improvement in the person re-identification accuracy.

For face recognition, another class of emerging algorithms is
the deep learning which uses convolutional neural network and
millions of (external) face images for training and obtain very
high accuracy rates [59], [60]. However, our chosen method is
still attractive because it uses small number of training samples
and does not use any external training data but can achieve
comparable performances [48].

Global data association: Once the feature similarities are
computed between pairs of observations across cameras, the
next step is to estimate associations between these observations
using a global data association method. As mentioned earlier,
the Network Consistent Re-identification (NCR) is used for
this purpose.

Re-identification between observations across cameras can
be performed via two strategies - (i) batch re-id, where all the
observations are available and a globally optimal set of associ-
ation labels are estimated in one shot, or (ii) online re-id, where
more observations are input to the system as time progresses
and the objective is to associate the newly observed targets
to the past observations as and when they become available.
For most practical scenarios, the complete re-id system should
be online as, in real life, flow of observations is continuous.
Moreover, for a large number of cameras and targets, a batch
data association framework is often computationally expensive
and hence infeasible.

In the next subsections we present the NCR method in
detail. Please note that the overall re-id strategy is online (see
Fig. 3) that iteratively associates new unlabeled observations
in a time window to all the labeled observations from the past
(online NCR) and a constrained version of the batch NCR can
be assumed as the building block of the online method. There-
fore, to facilitate a better understanding of the overall re-id
scheme, we present the construction of the batch NCR problem
first in Sec. II-B. Here, we define the terminologies and the
notations associated with NCR, introduce the general objective
function and the constraints. Then, once the fundamentals of
the NCR (batch) is thoroughly explained, we elaborate on how
these objective functions and the constraints can be modified
to formulate the online NCR based re-id problem in Sec. II-C.
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Fig. 2. An illustrative example showing the importance of the pairwise
association constraint (left set of arrows) and loop/consistency constraint
(right set of arrows) in a data-association problem. It presents a simple
person re-identification scenario in a network involving 6 unique targets
(data-points/nodes) in 3 wearable devices (groups). A graph is constructed
by joining nodes belonging to different groups with edges. The target of
re-id (NCR) is to assign labels (0-not associated/1-associated) on these edges
under two sets of constraints. According to the pairwise association constraint
one target from one camera FoV (e.g. target 2 in GG 3) may have at most
one match in another camera (e.g., GG 1). Also, to maintain consistency in
associations over the entire network, all paths associating two nodes must
conform to one another. For example, target 1 in GG 2 and the same target
in GG 3 have no pairwise association, although they are associated via an
indirect path through GG 1, thereby violating the loop constraint.

B. Batch Estimation of the Final Associations: Network Con-
sistent Re-identification

The problem of network inconsistency in classic person re-
identification tasks was introduced in [8] and later expanded
in [9]. A binary integer program to establish consistency in re-
identification and thereby improving association accuracy was
proposed in these works and termed as Network Consistent
Re-identification (NCR) or Network Consistent Data Asso-
ciation (NCDA). We shall use NCR/NCDA interchangeably
through this paper to refer to the same optimization method.

Following similar notations used in [8], we denote an
observation ¢ in camera/device g as Pf . In previous section,
we estimate feature similarity/distance between pairs of ob-
servations across cameras and let cf ’jq denote the similarity
score estimated between features from observations P! and
P, observed in camera p and q respectively. The expected
output of the NCR framework is a set of association labels
between each of these pairs of observations. Thus, if each
of the observations are considered as node in a network,
clusters of nodes observed in the same camera can be termed
as ‘groups’ and edges can be constructed between pairs of
nodes belonging to different groups. The goal is to estimate
a label xfy’j‘? for each such edge that will denote whether the
two nodes associated with this edge are from the same target,
ie., xqu =1, if P’ and 7;;_1 are the same targets and = 0,
otherwise.

A ‘path’ between two nodes (P?, 77;’ ) is a set of edges that
connect the nodes P and PJ‘? without traveling through a node
twice. Moreover, each node on a path belongs to a different
group. A path between PP and 73;1 can be represented as the
set of edges e(P}, P]) = {(P}, P}), (Py, Pg),--- (PL P},

where {P.,P;,---PL} are the set of intermediate nodes on

the path between P}’ and P;.

1) Constraints in Data Association: As the first step of
NCR, all the observations within each camera FoV (or for
the online re-id, all observations in each camera within a
time window) are first clustered based on the extracted facial
features so that all the image observations in each cluster are
from the same target. In consecutive frames in a FPV video,
the view point of the observer as well as the illumination in the
scene remain more or less constant. Also, the pose of the target
face with respect to the camera does not vary substantially
in successive frames as, in most situations, motion of the
target is straight towards the camera and mostly frontal face
shots are observed. The only variable in the observed faces in
consecutive time points is the gradually increasing resolution
of the face of the target. Even if there are minor misalignments
between captured faces of a target, the robust eye localization
based preprocessing step aligns the faces. Finally, all the
faces are normalized [5] to alleviate the problem of variable
size/resolution (see Sec. II-A). This makes the problem of
clustering observations from the same target in successive
frames an easier task. Given all the detected and aligned faces
in a camera FoV, pairwise feature distances are computed
using the same methods as in inter-camera (e.g. WSSDA) and
a clustering method [61] is employed to group observations
from the same targets within each camera FoV.

After clustering, each cluster is treated as one observation
and such observations (sets of images belonging to the same
target as observed in consecutive frames in one camera) are
associated across camera FoVs using the NCR method. Now,
because of this a-priori clustering there can be only one
observation (image set) from the same target in one camera
FoV. As a result, an observation Pf in camera p may have
at most one matching observation in any other camera ¢q. If
the same set of targets appear in all the camera FoVs, there
is an exact one-to-one match between observations across any
two camera pairs. However, in a realistic scenario, a target
may or may not appear in every camera FoV and hence,

V)l € {0, 1},

Ngq 'np

dali<1Vi=lton, » 2lf<1Vj=1lton, (1)
j=1 i=1

This is referred to as the ‘pairwise association constraint’ in
NCR/NCDA. An illustrative example of the pairwise con-
straint is shown in Fig. 2. Of all the edges connecting target
2 in GG 3 to all targets in GG 1, only one has label 1 and the
rest must have label O to satisfy this constraint.

Now, pairwise associations must also be consistent over the
network of camera FoVs. This set of conditions is important
when there are three or more cameras/wearable devices to
capture FPV images. The consistency condition simply states
that if two nodes (observations) are indirectly associated via
nodes in other groups, then these two nodes must also be
directly associated. Therefore, given two nodes Pf and PJ‘? , it
can be noted that for consistency, a logical ‘AND’ relationship
between the association value :cf) ’jq and the set of association

values {z" zl"} - :zrzg of any possible path between the

i,a’

nodes has to be maintained. The association value between



the two nodes P}’ and P has to be 1 if the association values
corresponding to all the edges of any possible path between
these two nodes are 1. Keeping the binary nature of the
association variables and the pairwise association constraint
in mind the relationship can be compactly expressed as,

i > > zyy | = 1eP(PLPHI+1 (@)
(P Pp)ee (PP, PY)
Vv paths el (Pp Pq) € 5(P§D,P}])’ where ‘e(z)(Pip’quN

denotes the cardinality of the path |e(*) (PP, P{)|, i.e. the
number of edges in the path. The relationship holds true for all
1 and all j. Now, any network containing even a large number
of wearable devices/cameras can be exhaustively expressed as
a collection of non-overlapping triplet of cameras. For triplets
of cameras the constraint in Eqn. (2) simplifies to,

P»Q>w177 +$k7q—2+1—{)3 +$k7q_1 (3)

The loop/consistency constraint can be easily verified from
the example case shown in Fig. 2. Say, the raw similarity
scores between pairs of targets across the GGs suggest asso-
ciations between (target 1 in GG 1, target 1 in GG 2), (2 in
GG 2, 11in GG 3) and (1 in GG 1, 1 in GG 3) independently.
However, combining these associations over the entire network
leads to an infeasible scenario - targets 1 and 2 in GG2 have
the same identity. The constraint in Eqn. (3) also successfully
capture this infeasibility, i.e., x?‘;’ = 0 but xif —|—a:%::1)’ -1=1,
thus violating the loop constraint.

2) Re-identification as an Optimization Problem: Under the
constraints expressed by Eqn. (1) and Eqn. (3), the objective
is to maximize the utility C = Zp o= S chial.
However, this utility function is only valid for one-to-one re-
identification case, as this may reward both true positive and
false positive associations (for example, when cp 1 e [0,1]),
and hence the optimal solution will try to a551gn as many
positive associations as possible across the network. This will
yield many false positive associations. One way of avoiding
such a situation in the current framework is to modify the
utility function as ZTLI =1 S (e — k)l where there
are m cameras in the network and k is any value within the
range of ¢’/ Vi, j,p,q. The value of k can be learned from
the training data (see Sec. III-C1) so that the true-positives
are rewarded and false-positives are penalized as much as
possible. Therefore, by combining the utility function with the
constraints in Eqn. (1) and Eqn. (3), the overall optimization
problem for m wearable devices with variable number of
observations is written as,

m  Mp,Ngq

. p.a
argmax | >} () — kel
i, p,q=1 4 5=1

i:[l,---,np] p<q

J=[1,- ,nq]
p,q=[1,"+ ,m]

Mg

subject to fof <1Vi=][1, nplVp,q =[1,--- ,m,
j=1
pr’q <1Vj=[L- 0y ¥pg=[1,--- ,m],p<q
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Fig. 3. Online person re-identification system diagram. The online system
works in an iterative fashion over small successive time windows. At any iter-
ation, a set of unlabeled observations acquired in the most recent time window
is associated to the past observations, given that the associations between the
past observations are already solved through the previous iterations.
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This is a binary integer linear program (ILP) and optimal
solution can be efficiently computed using exact algorithms.

C. Online Person Re-identification

The person re-identification framework presented in the last
subsection (Sec. II-B) is targeted towards the classical re-
id problem, where all observations are assumed available a-
priori before the data association is solved in a batch setup.
However, in a realistic setup it is hardly the case. In a large
network of wearable cameras deployed for the purpose of
surveillance, numerous targets are observed every instant and
the task is to assign identification labels on each/many of
these observations within a short turnaround time. Besides, in
such a network of wearable cameras it is often not feasible to
solve the association via a batch optimization problem, as the
computational complexity rapidly increases with large number
of observations. An online method, on the other hand, only
works on a small subset of these observations in an iterative
fashion and hence solves a much smaller data association
problem in each iteration. This can make the real-world re-
identification tractable.

The formulation for the online generalized NCR is presented
in [9]. It is a direct theoretical extension of the batch problem
(Eqn. (4)), as all the constraints (pairwise/loop) from the batch
NCR are preserved. Additionally, the online implementation
is capable of handling another realistic scenario that the batch
NCR is not designed to. If the same target reappears in the
same camera FoV after being observed in some other cameras
in the network, the online NCR, unlike the batch method, can
correctly re-id the target while maintaining global consistency.

The online person re-identification works in an iterative
fashion over small successive time windows. At any iteration,
the goal is to associate a set of unlabeled observations acquired
in the most recent time window to the past observations, given
that the associations between the past observations are already
solved. A system diagram showing the online re-id workflow
is presented in Fig. 3. For a set of unassociated observations
obtained in the most recent time window, first the facial
features are extracted and the feature similarities are computed



between these new observations as well as between the new
and all past (labeled) observations. The extracted features are
stored for future usage. Finally, the similarity scores are fed
to the online NCR method that optimally associates the new
observations with the past as well as amongst each other. The
mathematical details of the online NCR is briefly given below.

Let us assume that there are m groups (cameras) of observa-
tions upto time g)omt t and the number of unique observations
in group kis n;,’, k = 1,2, ---m. Thus, until time ¢, the total

m
number of unique observations is N} = n,(f). Let us also
1

assume that the N*) observations are already associated and
the association is represented using a set of estimated labels

xf”f = (t)qu Vi = [1, nz(,t)],Vj = [1, nét)},p,q =
1m], p<q.

In the next time window [t,t + w], say, there are [(w)
new observations across different cameras and the objective
is to associate these new observations to the already observed
targets and among each other. Now, some of these [(*)
observations may have temporal overlap with some other new
observation and therefore may not be associated with each
other. The 1(*) new observations can therefore be partitioned
into s subsets where no two observations within a subset may
have come from the same target. This partitioning problem is
analogous to the problem of finding the strongly connected
components in a graph (where the observations are nodes and
two nodes are connected by a link if they have temporal
overlap) and can be efficiently solved using a ‘depth-first
search’. Thus, N1 + g2 + - Npgs = 1(@) where Ny
is the number of unique observations in the pth subset. Now,
based on our definition of a‘group’, each of these s subsets can
be called a virtual/dummy ‘group’. Thus in the aforementioned
time window, the data-association problem can be solved using
NCR with a total of N®) 4 (*) nodes and m + s groups.

Each node in a dummy group is connected by edges from
all the nodes in the other m + s — 1 groups. The goal,
now is to optimally assign labels (0/1) to each of these
unlabeled edges, given that the data-association between all
the past observations (N in m groups) is already solved
and available. Let, the set containing all unlabeled edges at any
iteration be represented as F,. Each of these edges involves
(at least) one node from the new I(*) nodes. Depending on the
design of the online problem (such as the width of the time
window, number of cameras etc.), the number of unlabeled
edges per iteration (| E,|) can be kept substantially small and
hence the problem remains tractable.

The objective function is same as that of generalized NCR
(Eqn. (4)), though it is defined only on the set of unlabeled
edges (F,) for the online NCR, i.e.,

m—+s  Mp,Ng

Z Z gcp,]q

pg=m+1 ¢ j=1
p<q

m-+s,m Np,Ngq

+ > 2
p= m+1 1,j=1
ae1
)]
The association constraints between pairs of groups of obser-
vations are same as Eqn. (1), except the fact that at least one of
the groups must be a dummy group. This reduces the number
of constraints by a large margin. The set of groups over which

the pairwise association constraints are defined for online NCR
are, &) = {(p,q) :p.q € [L,---m+s],p < ¢}\{(p.q) :
p<m,q < m}.

The loop constraints remain the identical as in Eqn. (2)
or in the simplified Eqn. (3), but defined on a much smaller
subset. In online NCR, each of these inequality constraints
must involve at least one unlabeled edge, i.e., at least one
edge from the set {(P;,P]) U (P}, P;) U (P}, P})} must
belong to the set of unlabeled edges F,. So, by combining all
the constraints together, the online NCR problem for person
re-identification in time window [t,t + w] can be written as,
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Once the association labels are obtained by solving Eqn. (6),
the dummy groups are dissolved and the new observations,
labeled according to the association results, are put back to the
original groups they belong to. If an observation is associated
with a past observation from the same group (camera), they
are clubbed together into one node using any suitable fusion
strategy.

The Eqn. (6) as well as Eqn. (4) are binary integer linear
programs. As the constraint matrices are not consistently
totally unimodular, a LP relaxation is not guaranteed to give
integer solutions. Hence, we choose to employ exact algo-
rithms to solve the NCR optimization problems. In particular,
a ‘branch and cut’ method is used that combines the branch-
and-bound and ‘cutting plane’ methods. We also set an upper
limit on the run-time, and our solution is guaranteed to be
feasible.

III. EXPERIMENTAL RESULTS AND ANALYSIS
A. Database 1 for Offline Re-identification

4 GGs are used to collect FPV videos of 72 people, out
of which 37 are male and 35 are female resulting in about
7077 images. These videos are captured using egocentric



Fig. 4. Original images in Database 1, as captured and seen on the GGs.
Each row contains four images of the same persons, observed in 4 GG FoVs
(different locations), The targets in the images show diverse appearances and
are captured at different scales, poses and illumination conditions.

views at different levels in corridors, lifts, escalators, pantries,
downstairs eateries, passage ways, etc, of a large multi-storied
office environment. Cam 1, 2, 3 and 4 (corresponding to the
4 GGs) observe 52, 40, 43 and 50 persons in their respective
FoVs. Since both capturing and target people are moving the
images are often blurry in nature and they are sometimes out
of camera focus. The face and eye detectors as described
in section II-A serve as filters to remove images with large
motion blur or poor image quality.

Fig. 4 shows some good sample images as captured by
the GGs. Each of the three rows shows four images (on 4
GGs) containing the same person at different locations and
times. The dataset poses a tough challenge for person re-id
as the targets are captured at widely varying scales, poses and
illumination conditions. It can be also be observed from Fig. 4
that the same targets often appear in different clothings in
different cameras and hence a typical appearance feature based
person re-id system may not be applicable in such situations.
More details on the database 1 is given in the suppl. materials.

B. Pairwise Similarity Score Generation

Using the normalized images as described in section II-A,
we extract features applying various FI algorithms as described
in section II-A1l. We perform training using various FI algo-
rithms: PCA, FisherFaces, MSDA and WSSDA on the FPV
face image database and use the same training strategy as
described in [5], [52]. Each class (person) is partitioned by
the same number of subclasses (equally balanced). k-means
tree is built based on nearest neighbor (NN) clustering of face
appearances [5].

During training, we obtain the transformation matrices for
each of the methods using the same 42 people for training
comprising of 305 images. During the testing phase, novel
images are transformed using the transformation matrices ob-
tained from each of the methods into low-dimensional feature
vectors. We limit the dimensionality of the final transformation
matrix to 80 features (x the dimensionality of face image
vector [5]), so that the final features obtained are of 80
dimensions for each of the normalized face images. We use
cosine distance measures with 1-nearest neighbor (NN) as the
best match for each of the faces in a frame to generate pairwise
scores between the persons observed in each of cameras FoVs.
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Fig. 5. Estimation of optimal k£ (Eqn. (4)) from an annotated training
set. k is varied over the range of similarity scores in the training set
and overall association accuracy is computed for each k. (a) shows the
variation of accuracy with k for a training set of WSSDA similarity
scores and (b) shows the same for PCA based pairwise measures.

C. Network Consistent Re-identification (Offline)

1) Test-Train Partitions - Learning k From Training Data:
With the pairwise similarity scores generated (as explained in
the previous section), the next step is to optimally combine
them using the aforementioned Network Consistent Data As-
sociation (NCR) method, which yields the final association
results. As shown in Eqn. (4), the value of k in the objective
function of the integer program is specific to the distribution
of the pairwise similarity scores and hence has to be learned
from a training set before solving for the association labels.

As we have used four different methods, viz., PCA, Fish-
erFaces, MSDA and WSSDA for pairwise similarity score
generation, we generate four separate sets of consistent as-
sociation results - one for each of these baseline methods. We
refer to them as PCA+NCR, FisherFaces+NCR, MSDA+NCR
and WSSDA+NCR respectively throughout the rest of the
paper. For each of these four methods, we generate 10 sets of
exhaustive training-testing partitions (non-overlapping) from
the collected dataset. Each set contains 24 randomly selected
targets (a third of the dataset) in the training set and the
remaining 48 (two thirds of the dataset) are used for testing.
The final test results including re-identification accuracies for
each method are averaged over these 10 test sets.

To learn k for each of the training sets, first the range of
the pairwise similarity scores are identified. As the optimum
value of k must lie within this interval, we vary k£ and compare
the accuracy of data association against the ground truth on
the annotated training data. The accuracy is computed as
(i&"fnfgj;“;;)t f;"jl;f;i‘s'zt) and the value of k corresponding
to the maximum association accuracy is estimated as the
optimal of k and fixed during testing. We show examples of
variation of training accuracy with k in Fig. 5. If the maximum
accuracy is observed over a range of k£ (as seen in Fig. 5(a)
for WSSDA + NCR case), the mean k over that range is taken
as the optimum value. Fig. 5(b) shows another similar plot for
learning optimum % for the PCA+NCR experiments.

2) Re-identification Performance Comparisons: Before and
After NCR: The re-identification performances of the in-
dividual pairwise methods (PCA, FisherFaces, MSDA and
WSSDA) are presented and compared - both before and
after enforcing the network consistency. First, comparative
evaluations are shown in terms of recognition rate as Cumu-
lative Matching Characteristic (CMC) curves and normalized
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Fig. 6. CMC curves comparing methods (a) FisherFaces, (b) PCA, (c) MSDA and (d) WSSDA respectively, both before and after NCR.

Area Under Curve (nAUC) values, which are the common TABLE I
practice in the literature. The CMC curve is a plot of the =~ COMPARISON OF PCA, FISHERFACES (FF), MSDA AND WSSDA WITH
.. . THEIR NCR COUNTERPARTS BASED ON NAUC VALUES (UPTO RANK 10).
recognition percentage versus the ranking score and represents
the expectation of finding the correct match inside top ¢ [Cam|[ PCA | FF |MSDA [ WSSDA| PCA | FF | MSDA | WSSDA
matches. nAUC gives an overall score of how well a re- [par +NCR | + NCR | + NCR | + NCR
: : : : : . 12 [[0.5978 [ 0.6187 | 0.5439 | 0.6387 | 0.6179 | 0.6393 | 0.5600 | 0.6544
identification method performs 1H§spect1ve of the fiataset size. 5 1Toseia To507 102155 T o5 05745 To0asi 105317 T 0.8547
Please note that, we are presenting our results in the most 1-4 1] 0.5349[0.5183 [ 0.4890 | 0.6508 [ 0.5521 | 0.5410 [ 0.4957 | 0.6717
generalized test setup where targets may not be visible in all | 2-3_|[0-5849 [0.5090 | 0.5381 ] 06172 | 0.6185 | 0.5646 | 0.5664 | 0.6407
. o 2-4 || 0.6455 | 05571 | 0.5900 | 0.6717 | 0.6513 | 0.5817 | 0.5893 | 0.6950
the camera FoVs. Hence while estlmatlng the CMC and nAUC 34 0.8570 | 0.7826 | 0.7648 | 0.8708 | 0.8763 | 0.8423 | 0.7863 | 0.9017
values between any pair of cameras ¢ and j, only those targets

in camera ¢ are considered that are also observed in camera pairs of observations and the similarity scores cannot be

J’s FoV. re-computed based on these labels. However, to compare
As explained before, the output of NCR based re-id is a set improvements obtained by a re-id method before and after
of binary association labels (matched/not matched) between NCR, we employ the following strategy to compute the CMC
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Fig. 7. Improvements in rank-1 re-identification performance are attained
when pairwise feature distance computation methods are combined with NCR.
(a) (Top row) For the target 13 in GG 1 as query, top 8 retrieved results using
PCA from GG 2. The correct match is ranked 5". (Bottom row) Re-ranking
using PCA+NCR which puts the correct match at rank-1. (b) (Top row) For the
target 5 in GG 1 as query, top 8 retrieved results using FisherFaces from GG
2. Correct match was ranked as 4" before application of NCR. (Bottom row)
FisherFaces+NCR puts target 5 in camera 2 at the rank-1 position, thereby
improving the re-id accuracy.

curves. For the baseline methods (before NCR), the CMC
curves are drawn as usual using the similarity scores (real
valued, normalized between 0 and 1). Once NCR assigns 0/1
labels to the pairs of observations across cameras, we place
the observation corresponding to label 1 at rank 1 position
and regenerate the modified rankings. This is analogous to
changing the similarity score of the label 1 associations to
1.0 (or to the maximum possible similarity value) and then
re-compute the CMC curves.

Figs. 6(a), 6(b), 6(c), 6(d) present the CMC curves for
FisherFaces, PCA, MSDA and WSSDA respectively and in
each plot, comparisons of the recognition performances are
shown before and after application of NCR (e.g., PCA and
PCA+NCR in Fig. 6(b)). Plots are shown for camera pairs
1-2, 1-3, 2-3 and 2-4 for every feature computation method.
Each CMC is plotted upto rank 10. As observed, amongst the
four pairwise re-identification methods, WSSDA is superior
to all the other three methods. Moreover, for each of the
features and every camera pair, individual pairwise meth-
ods are substantially outperformed by their respective NCR
counterparts. In particular, WSSDA+NCR achieves the highest
rank-1 performances across all camera pairs, such as 49% in
camera pairs 1-2 and 2-3 and 80% in camera pair 3-4.

These observations are further established by the nAUC
values (computed from CMC until rank 10), as shown in
Table I. PCA+NCR, FisherFaces+NCR, MSDA+NCR and
WSSDA+NCR individually perform better than the pairwise
methods PCA, FisherFaces, MSDA (in 5 of 6 pairs) and
WSSDA respectively with WSSDA+NCR showing the best
nAUC scores across all 6 camera pairs.

After estimating the binary association labels using NCR,
the associations with label 1 between cameras p and ¢ are
processed to generate rank-1 matches for a target in camera p
(analogous to query) from all targets in camera ¢ (treated as
the gallery set). Thus, if the correct match is not returned as
rank-1 by a pairwise association method (any face verification
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Fig. 8. Comparison of overall re-identification accuracies (combining both
true-positives and false-positives).

method), a further processing through NCR can rectify the
error by re-ranking the correct match as the top ranked result.
Two example test cases from database 1 are shown in Fig. 7 for
camera pair 1-2. For each of these examples, one target from
camera 1 is selected as the query and all targets in camera 2 is
treated as the gallery set. Fig. 7(a) and (b) top rows show the
top 8 retrieved results from camera 2 for PCA and FisherFaces
respectively whereas the bottom rows show the same when
NCR is combined with the pairwise methods. The correct
matches (ranked as 5 and 4 respectively for the pairwise
methods) are retrieved as rank-1 when NCR is applied.

3) Overall Re-identification Accuracy by Combining both
True Positive and False Positive: A correct re-identification
result in a realistic dataset such as ours not only contains
correct matches (true positives) but also constitutes of the
true negatives, when a target is only observed in a sub-
set of cameras. Hence, the overall accuracy of person re-
identification across any pair in the network of wearable
devices should be estimated as g}’iﬂfgﬂgtjﬁ;ﬁ :;”fhzetge‘;‘:ei) We
compare these accuracy values obtained by NCR when applied
on each of PCA, FisherFaces, MSDA and WSSDA similarity
measures. From Fig. 8, it can be observed that NCR on
WSSDA is more accurate than PCA+NCR, FisherFaces+NCR
and MSDA+NCR across all 6 camera pairs, with the best
accuracy of more than 80% observed in camera pair 3-4.

We further plot ROC curves to show variation of true
positive rate (TPR/recall) with the false positive rate (FPR)
for all the baseline and baseline+NCR methods (Fig. 9). For
camera pairs 1-4, 2-4 and 3-4, WSSDA+NCR shows best
recall values for both low FPR (< 0.1) and for FPR > 0.3.
For camera pair 1-2, however, FisherFaces+NCR shows better
TPR at low FPR values. For all the camera pairs and all
baseline methods, baseline+NCR methods outperform baseline
(pairwise) only methods at low FPR values.

D. Online Person Re-identification

In this section, we show experimental results of NCR
when applied to the problem of online person re-identification
from multiple wearable cameras. The experimental setup for
the online re-id is fundamentally different from a classical
re-identification problem, where all observations across all
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Fig. 9. Portions of ROC curves (FPR< 0.4) for four camera pairs shown
for all four baseline methods (viz., PCA, FisherFaces, MSDA and WSSDA)
along with the four (baseline+NCR) methods (best viewed in color).

cameras are available a-priori and the data associations are
solved in batch. In the online case, however, more observations
become available as time progresses and NCR is sequentially
applied to associate clusters of observations in the current
time window to all past observations. Thus, to generate a
temporal stream of data, time information associated to each
observation is needed to be known. We assume that the
input to the NCR method is a set of tracklets (a temporally
consecutive series of observations/images from the same target
obtained from within the same camera FoV), which were made
available to the NCR at their respective times of appearance.
Moreover, as explained in Sec. II-C, the tracklets which are
temporally overlapping (even at different camera FoVs) may
not be associated with one another. Hence, during runtime
of the online NCR, tracklets having temporal overlaps were
clustered into the same dummy group, with the pairwise
similarity scores computed as described earlier in Sec. II-Al.
This necessitated collection of a second similar FPV dataset,
where the time information for each observation is available.

Database 2 for Online Re-identification: The FPV dataset
for the online person re-id was collected in a large multi-
storied office environment with 3 GGs. Videos of 14 persons
were collected as they walked along the office corridors in
unconstrained environment and were observed by the persons
wearing the GGs, at different locations of the office complex.
This resulted in around 4900 detected faces across the dataset.
Time stamp for every frame is stored as metadata. Out of the
14 persons, 11 are males and 3 are females and 10 of them
were wearing glasses (a challenging scenario for finding eyes).
Some good sample images from the database are shown in Fig.
10. 9 out of these 14 targets were observed in all three cameras
twice, whereas the rest were not observed in camera 3. This

Fig. 10. Database 2 for online re-identification. Left, original image captured
by Google Glass. Right four columns show 4 persons with 3 images each,
captured using 3 different Google Glasses at different locations/views.

yielded a test set containing 84 tracklets, one for each tracklet
in each camera FoV, which were to be associated with one
another using online NCR based on their identities.

Like the batch problem, the training phase of the online re-
id also has two main steps - 1. training the pairwise FI systems
(such as MSDA, WSSDA etc.) and 2. estimating optimal k. As
the database 2 is collected in the same office environment as
database 1 and the same set of features from the batch re-id are
used in online re-id experiments, we re-use the same training
data in online re-id as well. Thus, like the batch version, the
FI systems for the online re-id are identically trained on the
FPV face image database in [5], and we use the same set of
estimated k values for each of the four methods (as obtained
in the batch method and described in Sec. III-C1).

As the time information for each tracklet is available, the
tracklets are first clustered based on their temporal overlap
into 35 groups. Tracklets in each group have temporal overlap
(co-occuring) with one another and no two tracklets from
two different groups have time overlap. These clusters of
observations are further time ordered and at each iteration of
the online NCR, one such cluster is introduced as input. It
can be noted that each observation cluster may contain one
or more tracklet(s). Fig. 11(a) shows how new observations
are available at each iteration of the online NCR, and how the
total number of observed/labeled tracklets evolve. Each bubble
represents one cluster of tracklets, fed to the online NCR at
each iteration and the radius of the bubble is proportional to
the number of tracklets in the observed cluster. Note that the
tracklets in each cluster belong to unique targets as they have
temporal overlap with one another. As an example, the 30"
cluster has 6 unique temporally overlapping observed tracklets
(3 in camera 1 and 3 in camera 3), as shown by target’s face
images associated to each tracklet.

At each iteration, the new tracklets are associated with
the previously observed ones and labeled accordingly.
The association accuracy at each iteration is estimated as
(itg}euﬂ?;:::'?; j: e neeet e ). The change in estimated accuracy
with the increasing number of observations is plotted in
Fig. 11(b) for all four methods, viz., PCA+NCR, Fisher-
Faces+NCR, MSDA+NCR and WSSDA+NCR. As observed,
both FisherFaces and WSSDA, when combined with NCR
maintain very high association accuracy (more than 95%) even
when majority of the tracklets are observed, with FisherFaces
marginally outperforming WSSDA. PCA+NCR, on the other
hand stabilizes to around 82% average accuracy after initial
deterioration. MSDA, FisherFaces and WSSDA show very
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Fig. 11. Experiments and results on online person re-identification. (a) shows
the increase in total number of observed tracklets (sets of faces for unique
individuals) with iterations (analogous to time) in the online re-id setup. The
bubbles represent clusters of temporally overlapping tracklets in each iteration
(observational time window) and their radii are proportional to the number
of tracklets in each of them. Face images associated to individual tracklets
are shown for the 15'" and 30" clusters. (b) shows the time evolution
of re-identification accuracy for 4 methods - PCA+NCR, FisherFaces+NCR,
MSDA+NCR and WSSDA+NCR. Consistently high accuracies are observed
for both FisherFaces and WSSDA, with very slow rate of decrement for
FisherFaces, MSDA and WSSDA as more observations are available.

slow decrement in accuracy as time goes by and more and
more observations become available.

Two example cases are chosen from the experimental results
to show how NCR can yield consistent re-id where the
pairwise baseline methods fail. They are shown in Fig. 12. At
first, re-identification is performed independently over each of
the three pairs of cameras (GGs) using the WSSDA feature
similarity computation. In Fig. 12(a), independent pairwise
associations (red dashed lines) were correct between camera
pairs 1-2 and 2-3. However, the incorrect associations between
cameras 1-3 (red dashed line) make the association across
the 3 cameras inconsistent. Similarly, in Fig. 12(b), incorrect
pairwise re-identifications between targets across camera pair
2-3 make the overall results inconsistent. However, in both
the cases, NCR enforces network consistency and makes the
resultant data association results across the cameras correct (as
shown using solid green arrows).

Comparison of average run-times: We have also compared
the average run-times of the two global data association meth-
ods, viz., the batch NCR and the online NCR, by gradually in-
creasing the number of unlabeled observations (and hence the
number of variables to solve for) from 4 to 64. With increasing
number of observations, the batch NCR needs to solve much

Fig. 12. Example cases from the experimental results showing how the incon-
sistent associations are rectified. The red dashed lines denote re-identification
performed independently over each of the three pairs of cameras (GGs) using
the WSSDA feature similarity computation. Note that, incorrect associations
between targets in camera pair 1-3 in (a) and between camera pair 2-3
in (b) render the overall association incorrect. The NCR algorithm, when
applied over the same similarity scores generated by WSSDA, enforces the
consistency requirements and makes the resultant associations across the
cameras correct (as shown using green solid lines).

larger sized problems. The online NCR, on the other hand,
has to run for more number of iterations, proportional to the
number of observations, but solves a substantially small and
about fixed size problem per iteration. As seen in Fig. 13,
the batch NCR takes substantially longer time than the online
NCR to solve the same association problem, especially as
the number of observations increases. Moreover, unlike batch
NCR, the online method is more memory efficient thereby
making it an automatic choice for large scale re-id problems.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, the problem of re-identification from FPV
videos collected using multiple wearable devices such as GGs
is presented and discussed in detail. We present a frame-
work for solving this re-identification problem by combining
robust feature extraction methods for FPV face recognition
with global data association techniques for network-consistent
person re-identification (NCR). For real-life large scale person
re-id scenarios where the objective is to identify targets shortly
after they are observed, an online person re-id pipeline is also
proposed that builds on the online implementation of the NCR
algorithm.

For testing effectiveness of the proposed frameworks, we
have collected two separate FPV databases - one each for the
batch and online methods. The database 1 consists of FPV
images of 72 targets collected using 4 GGs in a complex
office environment. The database 2 (collected for online re-id)
consists of continuous videos (including timestamps) for 14
targets captured using 3 GGs as they navigate through office
corridors and are observed in the same camera FoVs twice.
Analysis of the results indicates robustness of the method (both
batch and online) in establishing consistency in association
results as well as significant improvements in accuracy over
the state-of-the-arts baseline methods across all camera pairs.
Moreover, the online re-id method is also shown to be much
faster and memory efficient, especially with large number of
observations. The future work would include improvement of
the method by incorporating other spaio-temporal motion con-
straints, development and utilization of novel facial features in
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Fig. 13. A comparison between the change in average runtimes for batch and
online NCR with increasing number of observations. The experiments were
done on a desktop computer with dual core Intel i5 CPU (3.2GHz), 8 GB
RAM and 64 bit Windows 7 operating system.

the present re-id framework, combining upper body features
with facial features and real-time implementation and testing
of the online NCR.
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